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Solving the SchroÈ dinger Equation for the Feynman
Quantum Computer

Tino Gramss1
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Feynman showed that a closed, locally interacting quantum system is capable of
performing deterministic computation. For a finite-size version of such a
computer, the SchroÈ dinger equation is solved analytically. The probability that
the computer yields a final result upon measurement is derived.

1. INTRODUCTION

The concept of quantum computers, first introduced by Benioff (1980a,
b), has recently found increasing interest. Usually such computers are dis-

cussed and analyzed regardless of whether their Hamiltonian exhibits long-

range interactions or not. However, there are two reasons for the interest in

locally interacting quantum computers. (1) Nonlocal interactions introduce

longer communication pathways, which give rise to reduced computational

speed. (2) Quantum computers with nonlocal interactions are probably more
difficult to realize because long-range interactions have to be implemented

on a submicroscopic level.

This work focuses on a closed, locally interacting quantum computer

model, first introduced by Feynman (1985, 1986).

Following Feynman’ s original idea, the power of quantum computers

with only local interactions has been analyzed by various authors. Peres
(1985) was the first to obtain some analytical results for such computers.

Margolus (1986, 1990), GroÈ ssing and Zeilinger (1988), and Biafori (1993)

generalized the concepts to local cellular automata. Results concerning com-

putational complexity theory can be found in Gramss (1994) and Lloyd (1996).
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2. THE FEYNMAN COMPUTER

Consider a deterministic classical computer that consists of k gates

connected in a serial way, as depicted in Fig. 1. It passes through a number
k of computational states until it displays a final result at the output of the

last gate. We now want to model the same computation by purely quantum

means. Assuming that the operation of gate n can be described by a unitary

matrix Dn and working on the computer ’ s memory,

| c n 1 1 & 5 Dn | c n & (1)

where | c n & is the wave function of the computer at time n, and | c n 1 1 & is the

wave function at time n 1 1. In order to realize a physical device like our

computer, we have to know its Hamiltonian. The Hamiltonian Hn that is

effective from time n to time n 1 1 is then given through

Hn 5 i ln Dn

Clearly, only a reversible computational step can be described by a unitary

matrix. It was shown first for classical systems (Toffoli, 1977; Fredkin and

Toffoli, 1982) and later computing quantum systems (Bennett, 1973, 1982,

1989; Levine and Sherman, 1990) that universal computation can be done

by purely reversible means without essential additional expenditure in space
and time. Therefore, reversibility is not a restriction for computational power.

However, it should be mentioned that a computer as depicted in Fig. 1

is not a universal one. Methods to construct a universal and locally interacting

quantum computer are described in Gramss (1994) and Lloyd (1996).

Applying sequentially the operations Dn results in a time-dependent

Hamiltonian that describes the overall evolution: After one computational
step, the Hamiltonian Hn has to be altered to Hn 1 1, which in turn will then

be effective for exactly one time unit.

Since the overall Hamiltonian is obviously time dependent, such a com-

putation cannot be done in a closed system. Feynman found a way to derive

a time-independent Hamiltonian that performs the desired computation (Feyn-
man, 1985, 1986). In the following, we will give a short description of the

Feynman computer.

Fig. 1. The Feynman computer. A logical gate performs an operation if the corresponding

control bit is set to ª spin up.º The up-spin is shifted to the right after a computational step.
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Figure 1 describes the operation of a Feynman computer with k logical

gates and k associated ª control bits.º The role of the control bits will become

clear in a moment.
To obtain a computer with a time-invariant Hamiltonian, the first step

is to add the control bits to each computational gate n. A control bit is set

to | 1 & if the associated computational gate n is active, otherwise it is set to

| 0 & . In a tensor product Hilbert space of the computer memory (on which

the operations Dn are performed) and the control bits, the effective unitary

operation for each computational step reads

Fn 5 Dn 1 1 | n 1 1 & ^ n |

[This notation differs from the one used by Feynman and in Gramss (1997).

It was introduced in Peres (1985).]

Therefore, if we have the computer in a state | c n & | n & where | c n & is the

state of the memory and | n & the control bit state, we get

F | c n & | n & 5 | c n 1 1 & | n 1 1 &
(2)

F ² | c n & | n & 5 | c n 2 1 & | n 2 1 &

F describes one step of a forward computation, F ² describes the reverse,

backward computation. By F, the ª cursorº (the control bit set to | 1 & ) is shifted

right, by F ² it is shifted left. Thus, | n & simply codes the position of the cursor.

For a finite-size computer, additional care has to be taken for the cases n 5
0 and n 5 k 2 1, as will be done below.

Feynman defined a time-independent Hamiltonian to be

H 5 F 1 F ² (3)

where

F 5 o
k 2 1

n 5 0

Fn (4)

H is indeed a Hamiltonian since it is a Hermitian matrix. Also, it consists

of a sum of locally acting Hamiltonians Hn 5 Fn 1 F
²
n.

According to the solution of the SchroÈ dinger equation, the dynamical

evolution of the computer is described by the unitary matrix

U 5 exp( 2 iHt)

By expanding the exponential we getÐ aside from constant factorsÐ terms

like F0F
²
1F3 or F

²
1F1F0 or F3F2F1F0. Applied to an initial computational state

with control bits all set to zero, the first operation will result in a zero vector,

since on the subspace of the control bits | 3 & ^ 2 | 0 & 5 0. By this example, the
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relevance of the control bits becomes clear: They are necessary to avoid

noncomputat ional states, i.e., states that do not correspond to the state of the

classical version of a Feynman computer. The second example, F
²
1F1F0, will

result in a computational state that has just performed the first operation F0

since F
²
1 reverses the operation F1. On the subspace of the control bits

| 0 & ^ 1 | 1 & ^ 0 | 0 & 5 | 0 & , the cursor is at position 0 again. The third operation will

result in a computer that has done four steps of computation in correct order.

Considering these examples, we note two things:

First: Only a superposition of computational states will arise if U operates
on the initial computational state or any other computational state or superpo-

sition of such states. In other words, the possible states of the computer are

confined to the subspace of computational states.

Second: On performing a proper measurement, we will find a computa-

tional state with a certain probability larger than zero and smaller than one.

In the following sections, the Hamiltonian (3) will be analyzed in detail.

3. COMPUTATIONAL CLOCKS AND THE COMPUTATIONAL
TIME OPERATOR

First we consider the dynamical evolution of the control bit states which
may serve as a quantum clock. It can be described by the operator C defined by

C | n & 5 | n 1 1 &
(5)

C ² | n & 5 | n 2 1 &

Thus C ² is the clock which ª runs backward.º In the case of a finite clock,

incrementing and decrementing n has to be done modulo the maximum and
minimum time values

C | N 2 1 & 5 | 0 &
(6)

C ² | 0 & 5 | N 2 1 &

We now introduce a simple operator that measures computational time.
Say the time operator is N and the nondegenerate orthogonal eigenstates

read | n & , where n is the corresponding eigenvalue. Then we can measure the

ª timeº n by using the time operator

N | n & 5 n | n & (7)

In the case of a finite-size computer, it is not difficult to give simple
matrices that represent the overall shift operator that works on the control

bit state and shifts the control bits from left to right in Fig. 1

We choose a representation in which the ith of the N orthogonal clock

states reads [0, 0, . . . , 0, 1, 0, . . . , 0], where the 1 occurs at the ith position.
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The matrix representation for the clock C is

C 5 F
0 1

1 0

1 0 0

? ?
0 ? ?

? ?
1 0 G (8)

The matrix representation of N reads

N 5 F
0

1

2 0

?
0 ?

?
N 2 1 G (9)

That is, the control bit state, which reads in vector notation as [1, 0, 0, . . . ,

0] (the 1 at position 0) is transformed to [0, 1, 0, . . . , 0] (the 1 at position
1) and so on, [0, 0, 0, . . . , 1] is transformed to [1, 0, 0, . . . , 0]. The states

are simply rotated.

In contrast to Margolus (1990), Biafori (1993), and Gramss (1997), we

will restrict ourselves to finite-size quantum computers.

4. EIGENSYSTEM OF THE HAMILTONIAN

Now we will calculate the eigensystem of the Hamiltonian H 5 F 1 F ² .

Consider equation (2) and Fig. 1. If upon measurement the clock is
found in state | n & we can be certain that the computer has done n steps of

computation and is in state | c n & | n & . In other words, during computation the

clock states are rotated in exactly the same way as the states | c n & of the

computer ’ s memory. This is why it is sufficient to find the eigensystem of

Hsub 5 C 1 C ² with C from (8).

We first diagonalize the clock matrix C from (8). It is a cyclic matrix,
which makes this task simple. (A cyclic matrix is a square matrix where a

row can be obtained by simply shifting all the entries in the upper row by

one. Therefore, a matrix A with entries anm is cyclic if anm, an, m 1 1 5 anm or

an, m 2 1 5 anm.)
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First we recall a theorem about cyclic matrices, which is central for the

following discussion (Strang, 1992):

All cyclic N 3 N matrices have the same eigenvectors, i.e., they can
be diagonalized by the same unitary matrix G , where

g nm 5
1

! N
z nm with z 5 exp 1 2 p i

N 2
Counting for the indices starts with zero. In matrix notation

G 5
1

! N 3
1 1 1 ? ? ? 1

1 z z 2 ? ? ? z N 2 1

1 z 2 z 4 ? ? ? z 2(N 2 1)

:
1 z N 2 1 z 2(N 2 1) ? ? ? z (N 2 1)2 4 (10)

Therefore, the normalized eigenvectors of every cyclic matrix are the rows

of G .

G from (10) diagonalizes C and C ² since both matrices are cyclic. Thus,
G also diagonalizes Hsub:

L 5 G ² Hsub G (11)

Since Hsub is Hermitian, L is a diagonal matrix which contains the eigenvalues

l k. After some calculations, we get from (8), (10), and Hsub 5 C 1 C ²

l k 5 2 cos 1 2 p k

N 2 (12)

For the eigenvector vk the entries vk,l 5 (1/ ! N) z kl. This is the kth column

of (10)

5. SOLUTION OF THE SCHROÈ DINGER EQUATION

Having diagonalized the Hamiltonian, we are now also able to compute

the time evolution of the Feynman computer. This can be done in a stan-

dard way.

Quite generally, the solution to the SchroÈ dinger equation reads

| c (t) & 5 exp( 2 iHsubt) | c (0) &

With (11) it follows that

| c (t) & 5 G exp( 2 i L t) G ² | c (0) & (13)

Say, the nth entry of the vector | c & is c n , and the elements of a matrix A
are denoted by (A )jk. Then
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c j (t) 5 o
k

( G )jk exp( 2 i ( L )kkt) o
l

( G ² )kl c l (0)

5
1

N o
k

z jk exp( 2 i l kt) o
l

z 2 kl c l (0)

5
1

N o
k

o
l

z k( j 2 l) z l 8
kt c l (0)

5
1

N o
l

o
k

z kl z l 8
kt c j 2 l(0)

5
1

N o
l
c j 2 l(0) o

k
z kl z l 8

kt

5
1

N o
l

c j 2 t(0)^l( z l 8
kt)

where the abbreviation l 8k 5 2 (N /2 p ) l k has been used, and ^l denotes the

Fourier transform

^l(xk) 5 o
k

xk e 2 p ikl/N

Therefore, the solution to the SchroÈ dinger equation is the convolution of the

initial state with the Fourier transform of z l 8
kt:

| c (t) & 5
1

N
| c (0) & * ^( z l 8

kt) (14)

In the Appendix, a power series for the Fourier transform in (14) is
derived. The Fourier transform of z l 8

kt can be written symbolically as

^n( z l 8
kt) 5 N exp{ 2 it[ m (n, 2 1) 1 m (n, 1 1)]}

where m (n, k) m (n, l) 5 m (n, k 1 l) and m (n, m) 5 d Ä n, m 5 d n mod N, m mod N .

This notation is explained in the Appendix.

It is possible to get a solution in closed form for special initial conditions,

as will now be shown.

We ask for the time evolution if we start with a single computational
state, i.e.,

c j (0) 5 d j,0

If we solve the SchroÈ dinger equation for this case, but start in a different

computational state, the solution can be easily obtained because of the cyclic

symmetry of the computer.

The solution to the SchroÈ dinger equation is
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c n(t) 5 d j,0 * (exp{ 2 it[ m ( j, 2 1) 1 m ( j, 1 1)]})

5 o d n 2 j,0 exp{ 2 it[ m ( j, 2 1) 1 m ( j, 1 1)]}

5 exp{ 2 it[ m (n, 2 1) 1 m (n, 1 1)]} (15)

From Figs. 2 and 3 it can be seen that the probability | c 0(t) | 2 to measure the

initial condition first decays in a smooth and oscillatory way before its time

evolution becomes irregular. This can be explained by expanding (15):

c n(t) 5 o
`

m 5 0

( 2 it)m

m!
( m (n, 2 1) 1 m (n, 1 1))m

5 o
`

m 5 0

( 2 it)m

m! o
m

k 5 0 1 mk 2 m (n, 2 1)m 2 k m (n, 1 1)k

5 o
`

m 5 0

( 2 it)m

m! o
m

k 5 0 1 mk 2 m (n, 2 m 1 k) m (n, k)

5 o
`

m 5 0

( 2 it)m

m! o
m

k 5 0 1 mk 2 m (n, 2 m 1 2k)

5 o
`

m 5 0

( 2 it)m

m! o
m

k 5 0 1 mk 2 d n,( 2 m 1 2k)modN

For the sake of simplicity, we will restrict ourselves in the following to the

case of even N. Here n labels the N computational states. It is convenient to

assume that n takes the values 2 N /2 1 1 . . . N /2. The term (
m

k
) in the second

sum only survives the Kronecker delta if

n mod N 5 ( 2 m 1 2k) mod N (16)

Since the modulo operation does not change the parity if N is even, it follows

that n 1 m must be even. The term 2 m 1 2k takes the values 2 m . . . 1 m.
There are no terms if m , | n | , and the condition (16) is fulfilled exactly for

a single k 5 ( | n | 1 m)/2 if | n | # m , N /2. A little more thinking yields

that, for even n 1 m, the condition is fulfilled exactly k m times for the same
term (

m

( | n | 1 m)/2
), where

k m
N

4
# m , k m

N

2
, k m $ 2

We now introduce the new running variable l so that m 5 | n | 1 2l.
Now, n 1 m takes only even values and m $ | n | . With this setting, we have
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c n(t) 5 o
`

l 5 0

k | n | 1 2l
( 2 it) | n | 1 2l

( | n | 1 2l)! 1 | n | 1 2l

| n | 1 l 2
5 o

`

l 5 0
k | n | 1 2l

( 2 it) | n | 1 2l

l!( | n | 1 l)!
(17)

Consider now the terms with small | n | 1 2l, which are dominant if t is small.

If | n | # m , N/2, k | n | 1 2l 5 1, and the expansion of (17) reads approximately

c n(t) ’ o
`

l 5 0

( 2 it) | n | 1 2l

l!( | n | 1 l)!
5 H J | n | (2t) for even n

2 iJ | n | (2t) for odd n

where J n (x) is the Bessel function of first kind and order n . The first N /2 2
| n | are exact. Therefore the approximation is the better, the smaller is | n | .

For the case where N /2 # m , N, which will become important below,

we have k | n | 1 2l 5 2. We then obtain

c n(t) ’ 5 2J | n | (2t) for even n

2 2iJ | n | (2t) for odd n
(18)

This approximation is good for | n | $ N /2.

In Fig. 2 the probability | c 0(t) | 2 is shown for small t, if we start in c j (0)

5 d j,0. It decays according to the squared Bessel function. For larger t, the

probability varies in an irregular way, as shown in Fig. 3.

Fig. 2. The probability to get the initial state upon measurement for a Feynman computer

with 20 gates. For small t, the probability decays according to a squared Bessel function.
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Fig. 3. The probability to get the initial state upon measurement for a Feynman computer

with 20 gates. For larger t, the probability varies in a quasiperiodic and irregular way.

6. THE PROBABILITY TO GET A RESULT UPON
MEASUREMENT

As already stated in Section 2, the probability to measure the final result

is smaller than one. However, if the measurement did not yield the final

result, it is possible to simply perform subsequent measurements until we

know the result of the computation. In principle, it is not necessary to prepare

the initial states of the computer after an unsuccessful measurement, because

a proper measurement always yields a computational state, where a proper
measurement is a measurement according to a Hermitian matrix with compu-

tational states as eigenvectors. After measurement, the computation continues

from this state on.

However, to minimize the number of measurements, it is helpful to

know the probability to measure the final result at a certain time t. One

should then try to perform measurements if this probability is high. Since
we have solved the SchroÈ dinger equation for the computers, it is possible to

calculate the probabilities.

Here, we will assume that the final state is the one after N /2 computa-

tional steps for a cyclic computer with N states in a cycle. It is of course

senseless to assume that the final state is reached after N 2 1 states: In this

case, the corresponding reversible classical computer only would have to
perform one backward step to yield a result. Also, it is easily possible to

construct a Feynman computer with an even number of k gates that works

in a cycle with N 5 k states and yields the result after N /2 computational

steps: If gate i performs a unitary transformation Di , then the Feynman
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computer applies D0 to the input state, then D1, and so on until, say, gate Dk/

2 produces the final state. Then we simply add gates that perform the inverse

operations D
²
k/2, D

²
k/2 2 1, . . . . After k 5 N computational steps, the initial state

is reached. The last gate is then coupled to the first, so that the entire

computation is done in a cyclic way.

Of particular interest is again a computation that starts in a single

computational state that codes the input to the program. In this case, the

entries for the Hilbert vector | c (0) & read c k(0) 5 d k0. In Figs. 4±6, the

probabilities | c N/2 | 2 [from (18)] to measure the result in this case are shown
for a computer with a total of 20 or 100 gates. The maximal probability in

the interval between t 5 0 and t 5 100 is 0.73 for the small computer and

0.14 for the large computer.

7. SUMMARY AND DISCUSSION

Upon measurement, the Feynman computer only yields a solution with

a probability that is smaller than one. Other measurement results correspond
to other computational states. However, a solution can always easily be

identified. For example, if the control bit of the last gate of a Feynman

computer is set, the state holds the solution. Thus, the probability p (t) to

find the solution at a certain time t is of particular interest. If the ª quantum

programmerº knows the function p(t), he will perform measurements at times
where p(t) is large.

It was possible to solve the SchroÈ dinger equations and to find p(t)
for the finite-size Feynman computer. It is not difficult to get an intuitive

Fig. 4. The probability to get a result upon measurement for a Feynman computer with

20 gates and small times.
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Fig. 5. The probability to get a result upon measurement for a Feynman computer with

20 gates and larger times.

understanding of the behavior of p(t) as depicted in Fig. 6. p(t) slowly

increases to a maximum value as one would expect from considering the

classical analogy. Then it becomes oscillatory due to the cyclic architecture
of the computer. For larger times, forward- and backward-spreading wave-

functions representing final states overlap in an irregular way. At predictable

times, a constructive interference of the wavefunctions may even give rise

to probabilities of finding result that are close to one.

Fig. 6. The probability to get a result upon measurement for a Feynman computer with

100 gates.
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The extent to which the findings are applicable to predicting the behavior

of cellular automata or quantum Turing machines with local Hamiltonians

is a subject of current research.

APPENDIX

In this Appendix, the Taylor expansion of the discrete Fourier transform

of z t l 8
k is derived, where z 5 e 2i p /N and l 8k 5 2 (N / p ) cos(2 p k /N ). This is

necessary to find the solution for the SchroÈ dinger equation for the cyclic

Feynman computer.

Here, the discrete and finite Fourier transform is defined as

^l(xk) 5 o
N 2 1

k 5 0

xk e 2i p kl/N

The power series of z t l 8
k reads

z t l 8
k 5 o

`

m 5 0

( 2 2it)m

m!
cosm 1 2 p k

N 2 5 1 2 2it cos 1 2 p k

N 2 1 . . . (A1)

It will now be shown by induction that

^n 1 cosm 1 2 p k

N 2 2 5
N

2m o
m

k 5 0 1 mk 2 d Ä n, 2 m 1 2k

where the tilde denotes that the indices of the Kronecker delta have to be

taken modulo N:

d Ä i, j 5 d imodN, jmodN

This can be written in a symbolic and more intuitive form, which will become

helpful below:

^n 1 cosm 1 2 p k

N 2 2 5
N

2m ( m (n, 2 1) 1 m (n, 1 1))m (A2)

where

m (n, k) m (n,l) 5 m (n, k 1 l) (A3)

and

m (n,m) 5 d Ä n, m

Note the extent to which this can only be interpreted in a symbolic way.

For example,
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m (a, b) m (a, c) Þ d Ä a, b d Ä a, c

The operation (A3) has to be performed first:

m (a, b) m (a, c) 5 m (a, b 1 c) 5 d Ä a, b 1 c

The Fourier transform of the first term in (A1), which is a constant, yields

a Kronecker delta:

^n(1) 5 o
k

e2i p kn/N 5 N d Ä n,0

The Fourier transform of a cosine yields the sum of two Kronecker deltas:

^n 1 cos 1 2 p k

N 2 2 5
1

2
^n 1 e2i p k/N 1 e 2 2i p k/N 2

5
1

2 1 o k e2i p k/Ne2i p kn/N 1 o
k

e 2 2i p k/N e2i p kn/N 2
5

1

2 1 o k e2i p k(n 1 1)/N 1 o
k

e 2 2i p k(n 2 1)/N 2
5

N

2 1 d Ä n, 2 1 1 d Ä n, 1 1 2
With the above symbolic notation, this reads

^n 1 cos 1 2 p k

N 2 2 5
N

2
( m (n, 2 1) 1 m (n, 1 1)) (A4)

To obtain the power series of the Fourier transform of (A1), we have

to know the Fourier transform of the mth power of a cosine. The problem

is that the Fourier transform is finite, which makes the evaluation more

difficult than in the infinite case.

The Fourier transform of a product is the convolution of two Fourier

transforms. With the proper normalization this reads

^n 1 cosm 1 1 1 2 p k

N 2 2 5 ^n 1 cosm 1 2 p k

N 2 cos 1 2 p k

N 2 2
5 ^n 1 cosm 1 2 p k

N 2 2 * ^n 1 cos 1 2 p k

N 2 2
5

1

N o
l

^n 2 l 1 cosm 1 2 p k

N 2 2 ^l 1 cos 1 2 p k

N 2 2
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If we substitute (A2) and (A4), we get

^n 1 cosm 1 1 1 2 p k

N 2 2
5

N

2m 1 1 o
N 2 1

l 5 0
( m (n 2 l, 2 1) 1 m (n 2 l, 1 1))m( m (n, 2 1) 1 m (n, 1 1))

5
N

2m 1 1 o
N 2 1

l 5 0
o
m

k 5 0 1 mk 2 d Ä n 2 l, 2 m 1 2k( d Ä l, 2 1 1 d Ä l, 1 1)

5
N

2m 1 1 o
m

k 5 0 1 mk 2 d Ä n 1 1, 2 m 1 2k 1 1 mk 2 d Ä n 2 1, 2 m 1 2k

5
N

2m 1 1 o
m

k 5 0 1 mk 2 d Ä n, 2 m 1 2k 2 1 1 1 mk 2 d Ä n, 2 m 1 2k 1 1

5
N

2m 1 1 o
m 2 1

k 5 0 1 m

k 1 1 2 d Ä n, 2 m 1 2k 1 1 1 1 mk 2 d Ä n, 2 m 1 2k 1 1

1 1 m0 2 d Ä n, 2 m 1 1 1 1 mm 2 d Ä n, 2 m 1 2m 1 1

5
N

2m 1 1 o
m 2 1

k 5 0 1 1 m

k 1 1 2 1 1 mk 2 2 d Ä n, 2 m 1 2k 1 1

1 1 m0 2 d Ä n, 2 m 1 1 1 1 mm 2 d Ä n, m 1 1

5
N

2m 1 1 o
m 2 1

k 5 0 1 m 1 1

k 1 1 2 d Ä n, 2 m 1 2k 1 1

1 1 m0 2 d Ä n, 2 m 1 1 1 1 mm 2 d Ä n, m 1 1

5
N

2m 1 1 o
m

k 5 0 1 m 1 1

k 2 d Ä n, 2 m 1 2k 2 1

2 1 m 1 1

0 2 d Ä n, 2 m 1 1 1 1 m0 2 d Ä n, 2 m 1 1 1 1 mm 2 d Ä n, m 1 1

5
N

2m 1 1 o
m

k 5 0 1 m 1 1

k 2 d Ä n, 2 (m 1 1) 1 2k 1 1 mm 2 d Ä n,m 1 1
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5
N

2m 1 1 o
m 1 1

k 5 0 1 m 1 1

k 2 d Ä n, 2 (m 1 1) 1 2k

5
N

2m 1 1 ( m (n, 2 1) 1 m (n, 1 1))m 1 1

Comparing with (A2) completes the induction. With (A1) and (A2) we
therefore obtain

SFn( z t l 8
k) 5 N o

`

m 5 0

( 2 it)m

m!
[ m (n 2 l, 2 1) 1 m (n 2 l, 1 1)]m

5 N exp{ 2 it[ m (n 2 l, 2 1) 1 m (n 2 l, 1 1)]}
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